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ABSTRACT 

 

In this paper, we investigate the concepts of topological entropy (briefly top. ent.) and topologically 

mixing (briefly top. mix.) property in the context of b-topological spaces (briefly b- top. sps.). We 

introduce the notion of b-top. ent.as a measure of complexity for dynamical systems (briefly dy. sy.) 

defined on b-top. sps. We establish its properties and provide examples to illustrate its behavior. 

Furthermore, we define and study the top. mix. property in the setting of b-top. sps. and explore its 

connections with other dynamical properties.  We present several results characterizing top. mix. and 

discuss its implications for the dynamics of b-topological systems.  

 

Keywords: b-Topological Spaces, Topological Entropy, Topologically Mixing Property, Dynamical 

Systems 

 

INTRODUCTION 

Top. ent. and top. mix. property have been extensively studied in the field of dy.sy. and 

topology. These concepts provide insights into the complexity and behavior of cont. 

transformations on topological spaces. The study of top. ent. and top. mix. property has found 

applications in various areas, including chaos theory, data analysis, and cryptography. 

In recent years, there has been growing interest in extending these concepts to b-top. sps. b-

top. sps., introduced by Franklin and Rajagopalan, are a generalization of topological spaces 

that allow for a more flexible notion of convergence. This generalization opens up new 

possibilities for investigating the behavior of cont. maps on b-top. sps. and exploring their 

dynamical properties. 

The main of this paper is to investigate the notions of top. ent. and top. mix. property in the 

context of b-topological spaces. We aim to provide a comprehensive understanding of these 

concepts and their implications in the realm of b-top. sy.  

 

Preliminaries 

Let (𝕌, 𝔏) be a top. sp., and let 𝒰 be a sub set of 𝕌 ,we used the concept of closure and interior 

of sets (briefly C and I respectively) for definition as follows 

 

Definition 2-1  

1. Let 𝒰 ⊂ 𝕌 ,we called 𝒰 is semi-open set [1] if 𝒰 ⊂ C(I(𝒰)) . 𝒰 is semi-closed set if 

I (C(𝒰)) ⊂ 𝒰 

2. Let 𝒰 ⊂  𝕌 , we called 𝒰 is pre-open set [2] if 𝒰 ⊂ I(𝐶 (𝒰)) . 𝒰 is pre-closed set if C(I 

(𝒰)) ⊂ 𝒰 
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3. Let 𝒰 ⊂  𝕌 , we called 𝒰 is b-open set [3] if 𝒰 ⊂ C (I(𝒰))  ∪ I(𝐶 (𝒰)) , . 𝒰 is b-closed 

set if I(C(𝒰))  ∩ C(I (𝒰)) ⊂ 𝒰 , 

New we given new definition of semi- (pre, b) -open set  

 

Definitions 2-2 

1. Let 𝒰 ⊂  𝕌 , we called 𝒰 is semi-open set if 𝒰 ⊂ C(𝒰) . 
2. Let 𝒰 ⊂  𝕌 , we called 𝒰 is pre-open set if 𝒰 ⊂ I(𝒰) . 
3. Let 𝒰 ⊂  𝕌 , we called 𝒰 is b-open set if 𝒰 ⊂ C(𝒰) ∪ I( 𝒰) . 

In the propositions follows we given the relation between the original definitions and our 

definitions.  

 

Proposition 2-3 Let (𝕌, 𝔏) be a top. sp., and let 𝒰 be a sub set of 𝕌 ,then  set 𝒰 is called a 

semi-open set if and only if the following two conditions are equivalent: 

1-𝒰 ⊂  C(I(𝒰)), 

2- 𝒰 ⊂  C(𝒰). 

 

Proof: Direction 1: (𝒰 is a semi-open ) ⇒ (𝒰 ⊂ C(I(𝒰)) and 𝒰 ⊂ C(𝒰)) 

Assume 𝒰  semi-open set. We want to prove that 𝒰 satisfies both conditions. Since 𝒰 is semi-

open, it means 𝒰 ⊂ C(I(𝒰))  (by definition). This satisfies the first condition. 

To show that 𝒰 ⊂ C(𝒰), let's consider an arbitrary point 𝑥 ∈ 𝒰. We need to prove that 𝑥 is in 

the closure of 𝒰. Since 𝑥 ∈ 𝒰, 𝑥 is either an interior point or a limit point of 𝒰. 

Case 1: 𝑥 is an interior point of 𝒰. there exists an open set 𝑈 such that 𝑥 ∈ 𝑈 ⊂ 𝒰. Since 𝑈 ⊂
𝒰, U is contained in the closure of 𝒰, i.e., 𝑈 ⊂ C(𝒰). Therefore, 𝑥 ∈ C(𝒰). 

Case 2: 𝑥 is a limit point of 𝒰. 

Since 𝑥 is a limit point of 𝒰, every open set containing 𝑥 intersects 𝒰 at a point other than 𝑥. 

This implies that for any open set 𝑉 containing 𝑥, we have 𝑉 ∩ 𝒰 ≠ ∅. In particular, 𝑉 ∩
 (𝒰 \ {𝑥}) ≠ ∅. 
Consider the set 𝑈 = C(𝒰\{𝑥}). 𝑈 is an open set because it is the complement of a closed set 

(𝒰\{𝑥}). Since 𝑉 ∩ (𝒰\{𝑥}) ≠ ∅ for any open set 𝑉 containing 𝑥, it means that 𝑉 intersects 

𝒰\{𝑥}, which implies that 𝑉 intersects 𝑈. Therefore, 𝑥 is a limit point of 𝑈.We know that 𝑈 is 

an open set containing 𝑥 and 𝑥 is a limit point of 𝑈. This means that 𝑥 ∈  C(𝑈) =
C(C(𝒰\{𝑥})). But C(𝒰\{𝑥}) is a subset of C(𝒰) because removing an element does not affect 

the closure. Therefore, 𝑥 ∈ C(𝒰).In both cases, we have shown that 𝑥 ∈ C(𝒰), so 𝒰 ⊂ C(𝒰), 

satisfying the second condition. Hence, if 𝒰 is a semi-open set, it implies that 𝒰 ⊂
C(I(𝒰)) and 𝒰 ⊂  C(𝒰). 
 

Direction 2: (𝒰 ⊂ C(I(𝒰)) and 𝒰 ⊂  C(𝒰))  ⇒  (𝒰 is a semi-open set)  

Assume 𝒰 ⊂ C(I(𝒰)) and 𝒰 ⊂  C(𝒰)). We want to prove that 𝒰 is a semi-open set. 

Let 𝑥 be an arbitrary point in 𝒰. We need to show that there exists an open set 𝑈 such that 𝑥 ∈
 𝑈 ⊂ C (𝒰)\ 𝒰. 

Since 𝒰 ⊂ C(I(𝒰)), we have  𝒰 ⊂ 𝐶(𝒰) ⊂ C(I(𝒰)) . This means that 𝑥 is either an interior 

point or a limit point of I(𝒰). 

Case 1: 𝑥 is an interior point of I(𝒰). 

In this case, there exists an open set 𝑉 such that 𝑥 ∈ 𝑉 ⊂ I(𝒰). Since I(𝒰) ⊂ 𝒰, we have 𝑥 ∈
 𝑉 ⊂ 𝒰. Also, 𝑉 ⊂ C(𝒰) because C(𝒰) contains I(𝒰). Therefore, 𝑈 =  𝑉 satisfies the 

condition 𝑥 ∈ 𝑈 ⊂  C(𝒰) \ 𝒰. 

Case 2: 𝑥 is a limit point of I (𝒰). 
Since 𝑥 is a limit point, every open set containing 𝑥 intersects I(𝒰) at a point other than 𝑥. This 

means that for any open set 𝑉 containing 𝑥, we have 𝑉 ∩ I(𝒰) ≠ ∅. 
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Consider the set 𝑈 = C (I(𝒰))\ I(𝒰). U is an open set because it is the complement of a closed 

set (I(𝒰)). Since 𝑉 ∩ I(𝒰)  ≠  ∅ for any open set 𝑉 containing 𝑥, it means that 𝑉 intersects 

I(𝒰), which implies that 𝑉 intersects 𝑈. Therefore, 𝑥 is a limit point of 𝑈. 

We know that 𝑈 is an open set containing 𝑥, and 𝑥 is a limit point of 𝑈. This means that 𝑥 ∈
C(𝑈)  =  C(C(I(𝒰)) \ I(𝒰)). But C(C(I(𝒰)) \I(𝒰)) is a subset of C(𝒰) because removing 

an element does not affect the closure. Therefore, 𝑥 ∈  C(𝒰). 
In both cases, we have shown the existence of an open set 𝑈 such that 𝑥 ∈  𝑈 ⊂  C(𝒰) \𝒰. 

Hence, 𝒰 is a semi-open set. 

Therefore, if 𝒰 ⊂  C(I(𝒰)) and 𝒰 ⊂  C(𝒰), it implies that 𝒰 is a semi-open set. 

 

Examples 2-3: 

1. Let 𝒰 = (0, 1) be a set in the real numbers. Here, I(𝒰) =(0, 1), and C(𝒰)  =  [0, 1]. 𝒰 

satisfies the condition 𝒰 ⊂  𝐶(𝐼(𝒰)) since 𝒰 is contained in its closure. Additionally, 𝒰 

also satisfies the condition 𝒰 ⊂ 𝐶(𝒰)  since 𝒰 is already closed. Therefore, 𝒰 is a semi-

open set. 

2. Consider the set 𝒰 =  [0, 1)  ∪  {2} in the real numbers. I(𝒰) =  (0, 1), C(𝒰) =  [0, 1]  ∪
 {2}. 𝒰 satisfies the condition 𝒰 ⊂ C(I(𝒰)) since 𝒰 is contained in its closure. 

Additionally, 𝒰 also satisfies the condition 𝒰 ⊂  C(𝒰) since 𝒰 is already closed. 

Therefore, 𝒰 is a semi-open set. 

 

Proposition 2-4: 

A set 𝒰 is called a pre-open set if and only if the following two conditions are equivalent: 

1- 𝒰 ⊂  𝐼(𝐶(𝒰)), where 𝐶 denotes the closure and 𝐼 denotes the interior of 𝒰. 

2- 𝒰 ⊂  𝐼(𝒰), where 𝐼 denotes the interior of 𝒰. 

 

Direction 1: (𝒰 is a pre-open set)  ⇒  (𝒰 ⊂  𝐼(𝐶(𝒰)) 𝑎𝑛𝑑 𝒰 ⊂  𝐼(𝒰)) 

Assume 𝒰 is a pre-open set. We want to prove that 𝒰 satisfies both conditions. Since 𝒰 is pre-

open, it means 𝒰 ⊂  𝐼(𝐶(𝒰)) (by definition). This satisfies the first condition. 

To show that 𝒰 ⊂ 𝐼(𝒰), let's consider an arbitrary point 𝑥 ∈ 𝒰. We need to prove that 𝑥 is in 

the interior of 𝒰.Since 𝑥 ∈  𝒰, x is an interior point of 𝒰. This means that there exists an open 

set 𝑈 such that 𝑥 ∈ 𝑈 ⊂  𝒰. Since 𝑈 is an open set contained in 𝒰, it is also contained in the 

interior of 𝒰, i.e., 𝑈 ⊂ 𝐼(𝒰). Therefore, 𝑥 ∈ 𝐼(𝒰). Hence, if 𝒰 is a pre-open set, it implies that 

𝒰 ⊂  𝐼(𝐶(𝒰)) and 𝒰 ⊂  𝐼(𝒰). 

Direction 2: (𝒰 ⊂ 𝐼(𝐶(𝒰)) 𝑎𝑛𝑑 𝒰 ⊂  𝐼(𝒰))  ⇒  (𝒰 is a pre-open set) 

Assume 𝒰 ⊂ 𝐼(𝐶(𝒰)) and 𝒰 ⊂ 𝐼(𝒰). We want to prove that 𝒰 is a pre-open set. 

Let 𝑥 be an arbitrary point in 𝒰. We need to show that there exists an open set 𝑈 such that 𝑥 ∈
𝑈 ⊂  𝐶(𝒰). 

Since 𝒰 ⊂ 𝐼(𝐶(𝒰)), it means that 𝒰 is contained in the interior of the closure of 𝒰. Therefore, 

𝑥 ∈ 𝒰 implies 𝑥 is an interior point of the closure of 𝒰, i.e., 𝑥 ∈ 𝐼(𝐶(𝒰)).Since 𝒰 ⊂ 𝐼(𝒰), it 

means that 𝒰 is contained in its interior. Therefore, 𝑥 ∈  𝒰 implies 𝑥 is an interior point of 𝒰, 

i.e., 𝑥 ∈  𝐼(𝒰). 

Combining these two facts, we have 𝑥 ∈  𝐼(𝐶(𝒰))  ∩  𝐼(𝒰). Since the intersection of two open 

sets is an open set, we can define 𝑈 = 𝐼(𝐶(𝒰))  ∩  𝐼(𝒰) as an open set containing 𝑥.Since 𝑈 

is an open set contained in both the closure of 𝒰 and 𝒰, it means that 𝑈 ⊂  𝐶(𝒰) and 𝑈 ⊂ 𝒰. 

Therefore, we have shown the existence of an open set 𝑈 such that 𝑥 ∈  𝑈 ⊂  𝐶(𝒰). 

Hence, if 𝒰 ⊂  𝐼(𝐶(𝒰)) and 𝒰 ⊂  𝐼(𝒰), it implies that 𝒰 is a pre-open set. 
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Examples 2-5: 

1. Let 𝒰 =  (0, 1) be a set in the real numbers. Here, 𝐶(𝒰) =  [0, 1], 𝐼( 𝒰) =  (0, 1). 𝒰 

satisfies the condition 𝒰 ⊂  𝐼(𝐶(𝒰)) since 𝒰 is contained in the interior of its closure. 

Additionally, 𝒰 also satisfies the condition 𝒰 ⊂  𝐼(𝒰) since 𝒰 is already open. Therefore, 

𝒰 is a pre-open set. 

2. Consider the set 𝒰 =  [0, 1)  ∪  {2} in the real numbers. 𝐶(𝒰) = [0, 1] ∪ {2}, and 𝐼(𝒰) =
 (0, 1). 𝒰 satisfies the condition 𝒰 ⊂ 𝐼(𝐶(𝒰)) since 𝒰 is contained in the interior of its 

closure. Additionally, 𝒰 also satisfies the condition  𝒰 ⊂ 𝐼(𝒰) since 𝒰 is already open. 

Therefore, 𝒰 is a pre-open set. 

 

Proposition 2-6 

A set 𝒰 is called a b-open set if and only if the following two conditions are equivalent: 

1- 𝒰 ⊂  𝐼(𝐶(𝒰)) ∪  𝐶( 𝐼(𝒰)). 

2- 𝒰 ⊂ 𝐼(𝒰) ∪ 𝐶( 𝒰). 

 

Proof: 

Direction 1: (𝒰 is a b-open set) ⟹  (𝒰 ⊂  𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰))) and (𝒰 ⊂  𝐼(𝒰) ∪ 𝐶(𝒰)) 

Assume 𝒰 is a b-open set. We want to prove that A satisfies both conditions. 

Since 𝒰 is b-open, it means 𝒰 ⊂  𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)) (by definition). This satisfies the first 

condition. 

To show that 𝒰 ⊂ 𝐼(𝒰)  ∪  𝐶(𝒰), let's consider an arbitrary point 𝑥 ∈ 𝒰. We need to prove 

that 𝑥 is either in the interior of 𝒰 or in the closure of 𝒰. 

Case 1: 𝑥 is an interior point of 𝒰. In this case, there exists an open set 𝑈 such that 𝑥 ∈  𝑈 ⊆
𝒰. Since 𝑈 is contained in 𝒰, it is also contained in the interior of 𝒰, i.e., 𝑈 ⊂  𝐼(𝒰). 

Therefore, 𝑥 ∈ 𝐼(𝒰) ∪ 𝐶(𝒰). 

Case 2: 𝑥 is a limit point of 𝒰. Since 𝑥 is a limit point of 𝒰, every open set containing 𝑥 

intersects 𝒰 at a point other than 𝒰. This means that for any open set 𝑉 containing 𝑥, we have 

𝑉 ∩ 𝒰 ≠ ∅. In particular, 𝑉 ∩ (𝒰 \ {𝑥}) ≠ ∅. Consider the set 𝑈 =  𝐶(𝒰 \ {𝑥}). 𝑈 is an 

open set because it is the complement of the closed set {𝑥} in 𝒰. Since 𝑉 ∩ (𝒰 \ {𝑥})  ≠  ∅ 

for any open set 𝑉 containing 𝑥, it means that 𝑉 intersects 𝒰 \ {𝑥}, which implies that 𝑉 

intersects 𝑈. Therefore, 𝑥 is a limit point of 𝑈. 

We know that 𝑈 is an open set containing 𝑥, and 𝑥 is a limit point of 𝑈. This means that 𝑥 ∈
𝐶(𝑈) = 𝐶(𝐶(𝒰 \ {𝑥})). But 𝐶(𝒰 \ {𝑥}) is a subset of 𝐶(𝒰) because removing an element 

does not affect the closure. Therefore, 𝑥 ∈  𝐶(𝒰). 

In both cases, we have shown that 𝑥 ∈  𝐼(𝒰)  ∪  𝐶(𝒰), so 𝒰 ⊂  𝐼(𝒰)  ∪  𝐶(𝒰), satisfying the 

second condition. Hence, if 𝒰 is a b-open set, it implies that 𝒰 ⊆  𝐼(𝐶(𝒰))  ∪  𝐶(𝐼(𝒰)) and 

𝒰 ⊆ 𝐼(𝒰) ∪  𝐶(𝒰). 

 

Direction 2: (𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰))) and (𝒰 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰)) ⇒ (𝒰 is a b-open set) 

Assume 𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)) and 𝒰 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰). We want to prove that 𝒰 is a b-open 

set. 

Let 𝑥 be an arbitrary point in 𝒰. We need to show that there exists an open set 𝑈 such that 𝑥 ∈
 𝑈 ⊂  𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)). Since𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)), it means that 𝑥 ∈  𝒰 implies 𝑥 is 

either in the interior of the closure of 𝒰 or in the closure of the interior of 𝒰. 

Case 1: Let 𝑥 ∈ 𝐼(𝐶(𝒰)), and there exists an open set 𝑈 such that 𝑥 ∈  𝑈 ⊂ 𝐶(𝒰). Since 𝐶(𝒰) 

is closed, 𝑈 is also contained in the closure of 𝒰, i.e., 𝑈 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)). Therefore, 

𝑥 ∈ 𝑈 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)). 
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Case 2: Let  𝑥 ∈ 𝐶(𝐼(𝒰)). 𝑥 is either an interior point or a limit point of 𝐼(𝒰). If 𝑥 is an interior 

point of 𝐼(𝒰), there exists an open set 𝒰 such that 𝑥 ∈  𝑈 ⊂  𝐼(𝒰). Since 𝐼(𝒰) is open, 𝑈 is 

also contained in the interior of 𝒰, i.e., 𝑈 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰). Therefore, 𝑥 ∈ 𝑈 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰). 

If 𝑥 is a limit point of 𝐼 (𝒰), then every open set containing 𝑥 intersects 𝐼 (𝒰) at a point other 

than x. This means that for any open set 𝑉 containing 𝑥, we have 𝑉 ∩ 𝐼(𝒰) ≠ ∅. In particular, 

𝑉 ∩ (𝐼(𝒰) \ {𝑥}) ≠ ∅. 

Consider the set 𝑈 = 𝐶(𝐼(𝒰) \ {𝑥}). 𝑈 is an open set because it is the complement of the closed 

set {x} in 𝐼(𝒰). Since 𝑉 ∩ (𝐼(𝒰) \ {𝑥} ≠ ∅ for any open set 𝑉 containing 𝑥, it means that 𝑉 

intersects 𝐼(𝒰) \ {𝑥}, which implies that 𝑉 intersects 𝑈. Therefore, 𝑥 is a limit point of 𝑈. 

We know that 𝑈 is an open set containing 𝑥, and 𝑥 is a limit point of 𝑈. This means that 𝑥 ∈
𝐶(𝑈) = 𝐶(𝐶(𝐼(𝒰) \ {𝑥})). But 𝐶(𝐼(𝒰) \ {𝑥}) ⊂ 𝐶(𝐼(𝒰)) because removing an element does 

not affect the closure. Therefore, 𝑥 ∈ 𝐶(𝐼(𝒰)).  

In both cases, we have shown the existence of an open set 𝑈 such that 𝑥 ∈ 𝑈 ⊂ 𝐼(𝐶(𝒰)) ∪
𝐶(𝐼(𝒰)). 

Hence, if 𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)) and 𝒰 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰), it implies that 𝒰 is a b-open set. 

 

Examples 2-6: 

1. Let 𝒰 = (0, 1) be a set in the real numbers. Here, 𝐶(𝒰) = [0, 1], and 𝐼(𝒰) = (0, 1). A 

satisfies the condition 𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)) since 𝒰 is contained in both the interior of 

its closure and the closure of its interior. Additionally, 𝒰 also satisfies the condition 𝒰 ⊂
𝐼(𝒰) ∪ 𝐶(𝒰) since 𝒰 is already open and its closure is the same as its closure. Therefore, 

𝒰 is a b-open set. 

2. Consider the set 𝒰 = [0, 1) ∪ {2} in the real numbers.  𝒰 = [0, 1] ∪ {2}, and 𝐼(𝒰) =
(0, 1). 𝒰 satisfies the condition 𝒰 ⊂ 𝐼(𝐶(𝒰)) ∪ 𝐶(𝐼(𝒰)) since 𝒰 is contained in both the 

interior of its closure and the closure of its interior. Additionally, 𝒰 also satisfies the 

condition 𝒰 ⊂ 𝐼(𝒰) ∪ 𝐶(𝒰) since 𝒰 is already open and its closure is the same as its 

closure. Therefore, 𝒰 is a b-open set. 

 

b-Topological Spaces: 

In this section, we provide a brief introduction to b-topological spaces, which form the basis 

for our study of top. ent. and top. mix. property. 

Definition 3-1: A b-topological space is a pair (𝕌, 𝔏), where 𝕌 is a non-empty set and 𝔏 is a 

collection of subsets of 𝕌. We denote the collection of all b-open sets in a b-topological space 

(𝕌, 𝔏),  as 𝐵(𝕌). The complements of b-open sets are called b-closed sets. The intersection of 

all b-closed sets containing a given set 𝒰 is called the b-closure of 𝒰 and is denoted as 𝐶𝑏(𝒰). 

Definition 3-2: A subset 𝒰 of 𝕌 is b-dense in 𝕌 if 𝐶𝑏(𝒰) = 𝕌, meaning that every point in 𝕌 

is either in 𝒰 or a limit point of 𝒰. 

Definition 3-3: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2) b-topological spaces, a fun. 𝑓: 𝕌1 → 𝕌2 is said to be 

b-cont. if the pre-image of every b-open set in 𝕌2 is a b-open set in 𝕌1. That is, for every 𝑉 ∈
𝐵(𝕌2), 𝑓−1(𝑉)  ∈  𝐵(𝕌1). 
Proposition 3-4: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2)be b-topological spaces, and let 𝑓: 𝕌1 → 𝕌2 be a b-

cont. fun. Then, for any closed set 𝐶 in 𝕌2, the 𝑓−1(𝐶) is closed in 𝕌1. 

Proof: Let 𝐶 be a closed set in 𝕌2. We want to show that 𝑓−1(𝐶) is closed in 𝕌1. By the 

definition of a b-cont. fun., for every b-closed set 𝐷 in 𝕌2, the 𝑓−1(𝐷) is a b-closed set in 𝕌1. 

Since 𝐶 is closed in 𝕌2, 𝐶 is a b-closed set. Therefore, 𝑓−1(𝐶) is a b-closed set in 𝕌1, which 

implies that it is closed in 𝕌1. 

Proposition 3-5: Let (𝕌1, 𝔏1) , (𝕌2, 𝔏2) , and (𝕌3, 𝔏3)be b-topological spaces, and let 𝑓: 𝕌1 →
𝕌21 and 𝑔: 𝕌2  →  𝕌3 be b-cont. funs. Then, the composition 𝑔 ∘ 𝑓: 𝕌1 → 𝕌3 is also b-cont. 
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Proof: We need to show that for every 𝑉 ∈  𝐵(𝕌3), the (𝑔 ∘ 𝑓)−1(𝑉) is a b-open set in 𝕌1. 

Since g is b-cont., the pre-image 𝑔−1(𝑉) is a b-open set in 𝕌2. Similarly, since 𝑓 is b-cont., the 

𝑓−1(𝑔−1(𝑉)) is a b-open set in 𝕌1. But (𝑔 ∘ 𝑓)−1(𝑉)  =  𝑓−1(𝑔−1(𝑉)), so (𝑔 ∘ 𝑓)−1(𝑉) is a 

b-open set in 𝕌1. Hence, 𝑔 ∘ 𝑓 is b-cont. 

Lemma 3-6: Let (𝕌1, 𝔏1) and  (𝕌2, 𝔏2)  be b-top. sps, and let 𝑓: 𝕌1 →  𝕌2 be a b-cont. fun. 

Then, for any subset 𝒰 of 𝕌1, we have 𝑓(𝐶𝕌1
(𝒰)) ⊂ 𝐶𝕌2

(𝑓(𝒰)), where 𝐶𝕌1
 denotes the 

closure of 𝒰 in 𝕌1 and 𝐶𝕌1
denotes the closure of 𝑓(𝒰) in 𝕌2. 

Proof: Let x be an element in 𝐶𝕌1
(𝒰)). For any b-open set 𝑉 in 𝕌2 containing 𝑓(𝑥), we need 

to show that 𝑉 intersects 𝑓(𝒰). Since 𝑓 is b-cont., the 𝑓−1(𝑉) is a b-open set in𝕌1. Since 𝑥 ∈
(𝒰), 𝑓−1(𝑉) must intersect 𝒰. Therefore, 𝑓(𝒰) intersects 𝑉, which implies that 𝑓(𝑥) ∈
𝐶(𝑓(𝒰)). Hence, we have 𝑓(𝐶𝕌1

(𝒰)) ⊂  𝐶𝕌2
(𝑓(𝒰)). 

Corollary 3-7: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2)  be b-top. sps., and let 𝑓: 𝕌1 →  𝕌2 be a b-cont. fun. 

If 𝑓 is a bijection, then the inverse fun. 𝑓−1: 𝕌1 →  𝕌2 is also b-cont. 

Proof: We need to show that for every 𝑉 ∈  𝐵(𝕌1), the pre-image (𝑓−1)−1(𝑉)  =  𝑓(𝑉) is a 

b-open set in 𝕌2. Since 𝑓 is b-cont., 𝑓−1(𝑉) is a b-open set in 𝕌1. But 𝑓−1(𝑉)  =  (𝑓−1)−1(𝑉), 

so (𝑓−1)−1(𝑉) is a b-open set in 𝕌2. Hence, 𝑓−1 is b-cont. 

Definition 3-8: A fun. 𝑓: 𝕌1 →  𝕌2 is said to be b-homeomorphism if it is bijective, b-cont., 

and its inverse fun. 𝑓−1: 𝕌1 →  𝕌2 is also b-cont. 

Proposition 3-9: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2)  be b-top. sps., and let 𝑓: 𝕌1 →  𝕌2 be a b-

homeomorphism. Then, for any open set 𝑈 in 𝕌1, the image 𝑓(𝑈) is open in 𝕌2. 

Proof: Since 𝑓 is b-cont., for every b-open set 𝑉 in 𝕌2, the 𝑓−1(𝑉) is a b-open set in 𝕌1. Let 

𝑈 be an open set in 𝕌1. Since 𝑈 is a b-open set, 𝑓(𝑈)  =  𝑓(𝑈)  ∩ 𝕌2 is a b-open set in 𝕌2. 

Hence, the image of an open set under a b-homeomorphism is open. 

Proposition 3-10: Let (𝕌1, 𝔏1) , (𝕌2, 𝔏2)  and (𝕌3, 𝔏3) be b-top. sps, and let 𝑓: 𝕌1 →  𝕌2 and 

𝑔: 𝕌2  → 𝕌3 be b-homeomorphisms. Then, the composition 𝑔 ∘  𝑓: 𝕌1  → 𝕌2 is also a b-

homeomorphism. 

Proof: We need to show that 𝑔 ∘  𝑓 is bijective, b-cont., and that its inverse fun. 𝑔 ∘  𝑓: 𝕌1  →
𝕌2 is also b-cont.  Since f and g are b-homeomorphisms, they are bijective and b-cont., and 

their inverse funs 𝑓−1:  𝕌2  → 𝕌1  and 𝑔−1: 𝕌3  → 𝕌2 are also b-cont. 

Bijectivity: Since 𝑓 and 𝑔 are bijective, their composition 𝑔 ∘  𝑓 is also bijective. 

B-continuity: By Proposition 3-4, 𝑓 and 𝑔 are b-cont., and by the composition of cont. funs, 

𝑔 ∘  𝑓is also b-cont. 

Inverse b-continuity: The inverse fun. of 𝑔 ∘  𝑓 is (𝑔 ∘  𝑓)−1  =  𝑓−1  ∘  𝑔−1. Since 𝑓−1 and 

𝑔−1 are b-cont., their composition (𝑔 ∘  𝑓)−1is also b-cont. 

Therefore, 𝑔 ∘  𝑓 is a b-homeomorphism. 

Lemma 3-11: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2)  be b-top. sps., and let 𝑓: 𝕌1  → 𝕌2 be a b-

homeomorphism. Then, for any subset 𝒰 of 𝕌1, we have 𝑓(𝐶𝕌1
(𝒰))  =  𝐶𝕌2

(𝑓(𝒰)), where 

𝐶𝕌1
 denotes the closure of 𝒰 in 𝕌1 and 𝐶𝕌2

denotes the closure of 𝑓(𝒰) in 𝕌2. 

Proof: The proof follows from Proposition 3-4 and the fact that 𝑓−1 is also a b-

homeomorphism. By applying Proposition 3-4 to the inverse fun. 𝑓−1: 𝕌2  → 𝕌1, we obtain 

𝑓−1( 𝐶𝕌2
(𝑓(𝒰)))  =  𝐶𝕌1

(𝑓−1(𝑓(𝒰))) = 𝐶𝕌1
(𝒰). Taking the image under 𝑓, we have 

𝑓(𝑓−1(𝐶𝕌2
(𝑓(𝒰))))  =  𝑓(𝐶𝕌1

(𝒰)), which implies 𝐶𝕌2
(𝑓(𝒰))  =  𝑓(𝐶𝕌1

(𝒰)). 

Corollary 3-12: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2)  be b-top. sps., and let 𝑓: 𝕌1  → 𝕌2 be a b-

homeomorphism. Then, for any closed set 𝐶 in 𝕌1, the image 𝑓(𝐶) is closed in 𝕌2. 

Proof: Since 𝑓 is a b-homeomorphism, its inverse fun. 𝑓−1: 𝕌2  →  𝕌1 is also b-cont. By 

applying Proposition 3-4 to 𝑓−1, we have that for any closed set 𝐷 in 𝕌1, the image 𝑓−1(𝐷)  =
 𝑓−1(𝐷 ∩ 𝕌1)  =  𝑓−1(𝐶𝕌1

(𝐷)) is closed in 𝕌2. Since 𝐶 is closed in 𝕌1, we have 𝑓(𝐶)  =

 𝑓(𝐶𝕌1
(𝐶))  =  𝐶𝕌2

(𝑓(𝐶)). Hence, 𝑓(𝐶) is closed in 𝕌2. 



AHMED M. RAJAB et.al. Topological entropy and topologically mixing property in b-topological spaces 

 

                       Galore International Journal of Applied Sciences and Humanities (www.gijash.com)  44 

Volume 7; Issue: 3; July-September 2023 

Definition 3-13:  Continuous maps on b-tops preserve the convergence of sequences. That is, 

if {𝑥𝑛} is a sequence in 𝕌1 that converges to a point 𝑥, and 𝑓: 𝕌1  → 𝕌2 is a b-cont. fun., then 
{𝑓(𝑥𝑛)} converges to 𝑓(𝑥) in 𝕌1. 

Proposition 3-14: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2) be b-top. sps, and let 𝑓: 𝕌1  → 𝕌2be a cont. map. 

If (xn) is a sequence in 𝕌1 that converges to a point 𝑥, then the sequence (𝑓(𝑥𝑛)) in 𝕌2 

converges to 𝑓(𝑥). 

Proof: Suppose (𝑥𝑛) is a sequence in 𝕌1 that converges to 𝑥. Let 𝑉 be a b-neighborhood of 

𝑓(𝑥) in 𝕌2. Since 𝑓 is cont., the 𝑓−1(𝑉) is a b-neighborhood of 𝑥 in 𝕌1. By the convergence 

of (𝑥𝑛) to 𝑥, there exists an index 𝑁 such that ∀ 𝑛 ≥  𝑁, 𝑥𝑛  ∈  𝑓−1(𝑉). This implies that 

∀ 𝑛 ≥  𝑁, 𝑓(𝑥𝑛)  ∈  𝑉. Therefore, the sequence (𝑓(𝑥𝑛)) in 𝕌2 converges to 𝑓(𝑥). 

Proposition 3-15: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2) be b-top. sps, and let 𝑓: 𝕌1  → 𝕌2be a b-

homeomorphism. If (𝑥𝑛) is a sequence in 𝕌1 that converges to a point 𝑥, then the sequence 

(𝑓(𝑥𝑛)) in 𝕌2 converges to 𝑓(𝑥), and vice versa. 

Proof: Since 𝑓 is a b-homeomorphism, it is cont. and its inverse fun. 𝑓−1 is also cont. By 

applying Proposition 3-14 to both 𝑓 and 𝑓−1, we conclude that if (𝑥𝑛) converges to 𝑥 in 𝕌1, 

then (𝑓(𝑥𝑛)) converges to 𝑓(𝑥) in 𝕌2. Similarly, if (𝑓(𝑥𝑛)) converges to 𝑓(𝑥) in 𝕌2, then 

(𝑥𝑛) converges to 𝑓−1(𝑓(𝑥)) =  𝑥 in 𝑋. Hence, the convergence of sequences is preserved 

under b-homeomorphisms. 

Lemma 3-16: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2) be b-top. sps, and let  𝑓: 𝕌1  → 𝕌2be a cont. map. If 

(𝑥𝑛) is a Cauchy sequence in 𝕌1, then the sequence (𝑓(𝑥𝑛)) is also a Cauchy sequence in 𝕌2. 

Proof: Suppose (𝑥𝑛) is a Cauchy sequence in 𝕌1. Let 𝜀 >  0 be given. Since (𝑥𝑛) is Cauchy, 

there exists an index 𝑁 such that ∀ 𝑚, 𝑛 ≥  𝑁, 𝑑𝕌1
(𝑥𝑚, 𝑥𝑛)  <  𝜀, where 𝑑𝕌1

 is the b-metric on 

𝕌1. By the continuity of 𝑓, ∀ 𝑚, 𝑛 ≥  𝑁, we have 𝑑𝕌2
(𝑓(𝑥𝑚), 𝑓(𝑥𝑛))  <  𝜀, where 𝑑𝕌1

 is the 

b-metric on 𝕌2. Therefore, (𝑓(𝑥𝑛)) is a Cauchy sequence in 𝕌2. 

Corollary 3-17: Let (𝕌1, 𝔏1) and (𝕌2, 𝔏2) be b-top. sps, and let  𝑓: 𝕌1  → 𝕌2be a b-

homeomorphism. If (𝑥𝑛) is a Cauchy sequence in let 𝕌1, then the sequence (𝑓(𝑥𝑛)) is also a 

Cauchy sequence in let  𝕌2, and vice versa. 

Proof: Since 𝑓 is a b-homeomorphism, it is cont. and its inverse fun. 𝑓−1 is also cont.. By 

applying Lemma 3-16 to both 𝑓 and 𝑓−1, we conclude that if (𝑥𝑛) is a Cauchy sequence in let  

 𝕌1, then (𝑓(𝑥𝑛)) is a Cauchy sequence in let  𝕌2. Similarly, if (𝑓(𝑥𝑛)) is a Cauchy sequence 

in let 𝕌2, then (𝑥𝑛) is a Cauchy sequence in let   𝕌1 . Hence, the convergence of sequences is 

preserved under b-homeomorphisms. 

Remark:  the composition of b-cont. funs is also b-cont. That is, if let  𝑓: 𝕌1  → 𝕌2 and let  

𝑔: 𝕌2  → 𝕌3are b-cont. funs, then their composition 𝑔 ∘  𝑓: 𝕌1  →  𝕌3 is also b-cont. 

Proposition 3-18: 

Let (𝕌1, 𝔏1) , (𝕌2, 𝔏2)  and (𝕌3, 𝔏3) be b-top. sps, and let 𝑓: 𝕌1  → 𝕌2and 𝑔: 𝕌2  → 𝕌3 be b-

cont. funs. Then, the composition 𝑔 ∘  𝑓: 𝕌1  →  𝕌3 is also b-cont. 

Proof: We need to show that for every b-open set 𝑉 in 𝕌3, the pre-image ( 𝑔 ∘  𝑓)−1(𝑉) is a 

b-open set in 𝕌1. Since 𝑔 is b-cont., the pre-image 𝑔−1(𝑉) is a b-open set in 𝕌2. Similarly, 

since 𝑓 is b-cont., the pre-image 𝑓−1(𝑔−1(𝑉)) is a b-open set in 𝕌1. But (𝑔 ∘  𝑓)−1(𝑉)  =
 𝑓−1(𝑔−1(𝑉)), so (𝑔 ∘  𝑓)−1(𝑉)  is a b-open set in 𝕌1. Hence, 𝑔 ∘  𝑓 is b-cont. 

Proposition 3-19:  

Let (𝕌1, 𝔏1), (𝕌2, 𝔏2) and (𝕌3, 𝔏3) be b-top. sps, and let 𝑓: 𝕌1  → 𝕌2and 𝑔: 𝕌2  → 𝕌3 be b-

homeomorphisms. Then, the composition 𝑔 ∘  𝑓: 𝕌1  →  𝕌3 is also a b-homeomorphism. 

Proof: We need to show that 𝑔 ∘  𝑓 is bijective, b-cont., and that its inverse fun. 

(𝑔 ∘  𝑓)−1: 𝕌3  →  𝕌1 is also b-cont.. Since 𝑓 and 𝑔 are b-homeomorphisms, they are bijective 

and b-cont., and their inverse funs  𝑓−1: 𝕌2  →  𝕌1 and  𝑔−1: 𝕌3  →  𝕌2 are also b-cont.  

Bijectivity: Since 𝑓 and 𝑔 are bijective, their composition 𝑔 ∘  𝑓 is also bijective. 
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B-continuity: By Proposition 3-14, 𝑓 and 𝑔 are b-cont., and by the composition of cont. funs, 

𝑔 ∘  𝑓 is also b-cont. 

Inverse b-continuity: The inverse fun. of 𝑔 ∘  𝑓 is (𝑔 ∘  𝑓)−1  =  𝑓−1  ∘  𝑔−1. Since 𝑓−1 and 

𝑔−1 are b-cont., their composition (𝑔 ∘  𝑓)−1 is also b-cont. Therefore, 𝑔 ∘  𝑓 is a b-

homeomorphism. 

Lemma 3-20: Let (𝕌1, 𝔏1), (𝕌2, 𝔏2) and (𝕌3, 𝔏3) be b-top. sps, and let  𝑓: 𝕌1  → 𝕌2 and 

𝑔: 𝕌2  → 𝕌3 be b-cont. funs. If 𝑔 ∘  𝑓 is b-cont. and 𝑓 is onto, then 𝑔 is b-cont. 

Proof: We need to show that for every b-open set 𝑉 in 𝕌3, the pre-image 𝑔−1(𝑉) is a b-open 

set in 𝕌2. Since 𝑔 ∘  𝑓 is b-cont., the pre-image (𝑔 ∘  𝑓)−1(𝑉)  =  𝑓−1(𝑔−1(𝑉)) is a b-open set 

in 𝕌1. Since 𝑓 is onto, for every b-open set 𝑈 in 𝕌1, there exists a b-open set 𝑊 in 𝕌2 such that 

𝑓(𝑈)  =  𝑊. In particular, for 𝑔−1(𝑉), there exists a b-open set 𝑊 in 𝕌2 such that 

𝑓(𝑔−1(𝑉)) = 𝑊. But 𝑊 = 𝑓(𝑈) for some b-open set 𝑈 in 𝕌1, so  𝑔−1(𝑉)  =  𝑈, which is a b-

open set in 𝕌1. Hence, 𝑔 is b-cont. 

Corollary 3-21: Let (𝕌1, 𝔏1), (𝕌2, 𝔏2) and (𝕌3, 𝔏3) be b-top. sps, and let  𝑓: 𝕌1  → 𝕌2 and 

𝑔: 𝕌2  → 𝕌3 be b-homeomorphisms. If 𝑔 ∘  𝑓 is b-cont. and 𝑓 is onto, then 𝑔 is also a b-

homeomorphism. 

Proof: Since 𝑔 ∘  𝑓 is b-cont., by Proposition 3-19, 𝑔 ∘  𝑓 is a b-homeomorphism. Since 𝑓 is 

onto, by Lemma 3-20, 𝑔 is b-cont. Therefore, 𝑔 is a b-homeomorphism. 

 

Topological Entropy in b-Topological Spaces 

In this section, we introduce the concept of top. ent.in the context of b-top. sps. The notion of 

top. ent. measures the complexity or chaos of a dy. sy. We adapt this concept to the framework 

of b-top. sp by defining b-top. ent. 

Definition 4-1: Let (𝕌1, 𝔏1) be a b-top. sp., and consider a cont. map 𝑓: 𝕌1  → 𝕌1. We define 

the b-top. ent. ℎ𝑏(𝑓) of the dy. sy. (𝕌1, 𝔏1) as follows: ℎ𝑏(𝑓)  =

 lim
𝜀 → 0

sup
𝑛 ≥ 1

(
1

𝑛
𝑙𝑜𝑔 𝑁𝑏(𝑛, 𝜀) )  ,where 𝑁𝑏(𝑛, 𝜀) denotes the minimum number of 𝜀-balls needed to 

cover the set of all possible n-tuples of points in 𝕌1. 

In simpler terms, ℎ𝑏(𝑓) measures the exponential growth rate of the number of distinguishable 

orbits or trajectories as time progresses under the action of the map 𝑓. A higher value of ℎ𝑏(𝑓)  

indicates greater complexity and more chaotic behavior in the system. 

The b-top. ent. ℎ𝑏(𝑓) satisfies the following properties: 

1. Positivity: ℎ𝑏(𝑓)   ≥  0 for any cont. map 𝑓. 

2. Monotonicity: If 𝑔: 𝕌1  → 𝕌1 is another cont. map such that 𝑓(𝑥)  =  𝑔(𝑥) for almost 

every 𝑥 in  𝕌1 , then ℎ𝑏(𝑓)  ≤  ℎ𝑏(𝑔). 

3. Invariance: If 𝜑: 𝕌1  → 𝕌1is a b-homeomorphism, then ℎ𝑏(𝜑−1 ∘ 𝑓 ∘ 𝜑) = ℎ𝑏(𝑓). 

These properties establish the fundamental behavior of b-top. ent. and provide a basis for 

further analysis. 

 

Examples 4-2: 

1. Consider the discrete b-topology on a set 𝕌1. In this case, every subset of 𝕌1 is a b-open 

set. Let 𝑓: 𝕌1 → 𝕌1 be a cont. map. Since every set is b-open, the number of 𝜀-balls needed 

to cover n-tuples is always 1. Thus, 𝑁𝑏(𝑛, 𝜀)  =  1 for all 𝑛 and 𝜀. Consequently, the b-top. 

ent. ℎ𝑏(𝑓) is 0, indicating no complexity or chaos in the system. 

2. Let 𝕌1 =  [0, 1] be the closed interval with the usual topology. Consider the map 𝕌1: 𝑋 →
 𝑋 defined by 𝑓(𝑥)  =  2𝑥 (mod 1), where mod 1 denotes taking the fractional part of a 

real number. It can be shown that the b-top. ent. ℎ𝑏(𝑓) = 𝑙𝑜𝑔(2), indicating a positive level 

of complexity and sensitivity to initial conditions. 
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Comparison with Traditional Topological Entropy: 

Traditional top. ent.is defined in the context of topological spaces with the usual notion of open 

sets. The concept of b-top. ent. generalizes traditional top. ent.to b-top. sps. 

In traditional topological entropy, the entropy measure is defined using open covers and the 

number of open sets needed to cover n-tuples of points. In contrast, b-top. ent. employs the b-

open sets and the number of 𝜀-balls required to cover n-tuples. 

While traditional top. ent. and b-top. ent. share similar notions and properties, they differ in the 

choice of open sets or balls used for coverings. The b-top. ent. provides a more flexible 

framework that can capture a wider range of convergence behaviors and dynamics. 

Understanding the similarities and differences between traditional top. ent. and b-top. ent. 

allows us to appreciate the nuances and advantages of the latter in studying dy. sy. on b-top. 

sps. 

 

Proposition 5-1: Let (𝕌1, 𝔏1)  be a b-top. sp., and let 𝑓: 𝕌1 →  𝕌1 be a cont. map. If 𝑔: 𝕌1  →
 𝕌1 is a b-homeomorphism conjugate to 𝑓, i.e., there exists a b-homeomorphism 𝜑: 𝕌1  → 𝕌1 

such that 𝑓 =  𝜑−1  ∘  𝑔 ∘ 𝜑, then ℎ𝑏(𝑓) =  ℎ𝑏(𝑔). 
Proof: Let 𝑁𝑏(𝑛, 𝜀) denote the number of 𝜀-balls needed to cover the set of all possible n-

tuples of points in 𝕌1. Since 𝜑 is a b-homeomorphism, it preserves b-open sets, and hence, 

𝑁𝑏(𝑛, 𝜀) is the same for both 𝑓 and 𝑔. Thus, the entropy of 𝑓 and 𝑔 is equal, i.e., ℎ𝑏(𝑓)  =
 ℎ𝑏(𝑔). 

Lemma 5-2: Let (𝕌1, 𝔏1)  be a b-top. sp., and let 𝑓: 𝕌1  →  𝕌1 be a cont. map. If 𝑓 has a fixed 

point, i.e., there exists 𝑥 ∈ 𝕌1 such that 𝑓(𝑥)  =  𝑥, then ℎ𝑏(𝑓)  =  0. 

Proof: Let 𝑥 ∈ 𝕌1 be a fixed point of 𝑓. For any n, the n-tuple (𝑥, 𝑥, . . . , 𝑥) is fixed under 𝑓𝑛. 

Thus, 𝑁𝑏(𝑛, 𝜀)  =  1 ∀ 𝑛 and 𝜀. Therefore, the b-top. ent ℎ𝑏(𝑓) = lim
𝜀 → 0

sup
𝑛 ≥ 1

(
1

𝑛
𝑙𝑜𝑔 𝑁𝑏(𝑛, 𝜀)) =

0. 

Corollary 5-3: If a cont. map 𝑓: 𝕌1  → 𝕌1 on a b-topological space (𝕌1, 𝔏1)   has a periodic 

point, i.e., there exists 𝑥 ∈  𝕌1   and a positive integer k such that 𝑓𝑘(𝑥)  =  𝑥, then ℎ𝑏(𝑓)  =
 0. 

Proof: A periodic point 𝑥 with period 𝑘 implies that the n-tuple (𝑥, 𝑓(𝑥), . . . , 𝑓𝑘−1(𝑥)) is 

fixed under 𝑓𝑛 for any 𝑛 ≥ 𝑘. Thus, 𝑁𝑏(𝑛, 𝜀) = 1  ∀ 𝑛 ≥ 𝑘 and 𝜀. Therefore, the b-top. ent.                                                      

ℎ𝑏(𝑓) = lim
𝜀 → 0

sup
𝑛 ≥ 1

(
1

𝑛
𝑙𝑜𝑔 𝑁𝑏(𝑛, 𝜀)) = 0. 

Proposition 5-4: Let (𝕌1, 𝔏1)and (𝕌2, 𝔏2)  be b-top. sps., and let 𝑓: 𝕌1 → 𝕌2 be a cont. map. 

If ℎ𝑏(𝑓) = 0, then ℎ𝑏(𝑔)  =  0 for any cont. map 𝑔: 𝕌2 → 𝕌2. 

Proof: Since ℎ𝑏(𝑓) = 0, for any 𝜀 > 0, there exists an integer n such that 𝑁𝑏(𝑛, 𝜀) = 1. 

Consider 𝑔: 𝕌2 →  𝕌2, a cont. map. For any positive integer 𝑚, we have 𝑁𝑏(𝑚𝑛, 𝜀) = 1, as 𝑓𝑛 

and 𝑔 commute. Therefore, the b-top. ent. of 𝑔, ℎ𝑏(𝑔) = lim
𝜀 → 0

sup
𝑚 ≥ 1

(
1

𝑚
𝑙𝑜𝑔 𝑁𝑏(𝑚, 𝜀) )    =  0. 

Proposition 5-5: Let (𝕌1, 𝔏1)be a b-topological space, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If 

𝑔: 𝕌1  →  𝕌1 is a b-homeomorphism conjugate to 𝑓, i.e., there exists a b-homeomorphism 

𝜑: 𝕌1  →  𝕌1 such that 𝑓 =  𝜑−1 ∘ 𝑔 ∘ 𝜑, then ℎ𝑏(𝑓) = ℎ𝑏(𝑔). 

Proof: The proof follows similar lines as in Proposition 4-3 for top mix. Since 𝜑 is a b-

homeomorphism, it preserves b-open sets, and therefore the covering numbers 𝑁𝑏(𝑛, 𝜀) for 𝑓 

and 𝑔 are the same. Thus, ℎ𝑏(𝑓)  =  ℎ𝑏(𝑔). 
Proposition 5-6:  Let (𝕌1, 𝔏1) be a b-top sp, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is 

topologically transitive, then ℎ𝑏(𝑓)  >  0. 

Proof: Suppose (𝕌1, 𝑓)is topologically transitive. Then, for any non-empty open sets 𝐴 and 𝐵 

in 𝕌1 , there exists an integer 𝑁 such that 𝑓𝑁(𝐴)  ∩  𝐵 ≠  ∅. By Lemma 4-4, if a system is top 

mix, it is also top transitive. Therefore, (𝕌1, 𝑓) is not top mix, and thus ℎ𝑏(𝑓)  >  0. 
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Lemma 5-7: Let (𝕌1, 𝔏1) be a b-top sp, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If 𝑓 has a dense 

orbit, i.e., the orbit of some point 𝑥 ∈  𝕌1 under 𝑓 is dense in 𝕌1, then ℎ𝑏(𝑓)  =
 𝑙𝑜𝑔(𝑁𝑏(1, 1/2)). 

Proof: Let 𝐴 be a non-empty open set in 𝕌1. Since the orbit of 𝑥 under 𝑓 is dense in 𝕌1, for 

every 𝑛 ≥  1, we can find a point 𝑦 in 𝐴 such that 𝑓𝑛(𝑦) is in 𝐴 as well. Thus, for every 𝑛 ≥

 1, the 𝜀-ball centered at (𝑦, 𝑓(𝑦), . . . , 𝑓𝑛−1(𝑦)) with radius 
1

2
 covers all n-tuples in 𝐴. 

Therefore, 𝑁𝑏(𝑛,
1

2
) = 1 for every 𝑛 ≥  1. The b-top. ent. ℎ𝑏(𝑓) is then given by ℎ𝑏(𝑓) =

lim
(𝜀 → 0)

sup
𝑛 ≥ 1

(
1

𝑛
𝑙𝑜𝑔 𝑁𝑏(𝑛, 𝜀) )  =  𝑙𝑜𝑔(𝑁𝑏(1,

1

2
)). 

 

Topologically Mixing Property in b-Topological Spaces 

Proposition 6-1: Let (𝕌1, 𝔏1) be a b-top sp, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is 

top mix, then for any positive integer 𝑘, the system (𝕌1, 𝑓𝑘) is also top. mix. 

Proof: Suppose (𝕌1, 𝑓)  is top mix. Let 𝐴 and 𝐵 be non-empty open sets in 𝕌1. Since (𝕌1, 𝑓)  

is top mix, there exists an integer 𝑁 such that for every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴)  ∩  𝐵 ≠  ∅. Now 

consider the system (𝕌1, 𝑓𝑘)  for a fixed positive integer k. We have (𝑓𝑘)𝑛(𝐴)  =
 𝑓𝑘𝑛(𝐴), and for 𝑛 ≥  𝑁, 𝑓𝑘𝑛(𝐴)  ∩  𝐵 ≠  ∅. Hence, (𝕌1, 𝑓𝑘) is also topo mix. 

Proposition 6-2: Let (𝕌1, 𝔏1) be a b-top sp, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is 

top. mix. and 𝑔: 𝕌1 → 𝕌1 is a cont. map such that 𝑓(𝑥) = 𝑔(𝑥) for almost every 𝑥 in 𝕌1, then 

(𝕌1, 𝑔) is also top. mix. 

Proof: Suppose (𝕌1, 𝑓)  is topologically mixing, and let 𝐴 and 𝐵 be non-empty open sets in 

𝕌1. Since (𝕌1, 𝑓)  is top. mix., there exists an integer N such that for every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴)  ∩
 𝐵 ≠  ∅. Consider the set 𝐸 =  {𝑥 ∈ 𝕌1: 𝑓(𝑥) = 𝑔(𝑥)}. Since 𝑓(𝑥)  =  𝑔(𝑥) for almost every 

𝑥 in 𝕌1, we have 𝜇(𝐸)  =  1, where 𝜇 denotes the measure of a set. Now, let 𝐴′ =  𝐴 ∩  𝐸 and 

𝐵′ =  𝐵 ∩  𝐸. Since 𝜇(𝐸)  =  1, 𝐴′ and 𝐵′ are non-empty open sets. For every 𝑛 ≥  𝑁, we 

have 𝑓𝑛(𝐴′)  ∩  𝐵′ ≠  ∅ since 𝑓𝑛(𝐴′)  ∩  𝐵 ≠  ∅ and 𝑓(𝑥)  =  𝑔(𝑥) for almost every 𝑥 in 𝕌1. 

Therefore, (𝕌1, 𝑔) is also top. mix. 

Lemma 6-3: Let (𝕌1, 𝔏1) be a b-top sp, and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is top. 

mix, then (𝕌1, 𝑓) is also topologically transitive. 

Proof: Suppose (𝕌1, 𝑓)  is top mix. To show that (𝕌1, 𝑓) is topologically transitive, we need 

to prove that for any non-empty open sets 𝐴 and 𝐵 in 𝕌1, there exists an integer 𝑁 such that 

for every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴)  ∩  𝐵 ≠  ∅. This condition is satisfied by the definition of topological 

mixing. Hence, (𝕌1, 𝑓) is also topologically transitive. 

Corollary 6-4: If (𝕌1, 𝑓) is a top. mix. system on a b-top sp (𝕌1, 𝔏1), then (𝕌1, 𝑓) is also 

topologically transitive. 

Proof: By Lemma 5-3, if (𝕌1, 𝑓) is top. mix, then it is also topologically transitive. Therefore, 

the corollary holds. 

Proposition 6-5: Let(𝕌1, 𝔏1) be a b-top. sp., and let 𝑓: 𝕌1  →  𝕌1 be a cont. map. If (𝕌1, 𝑓) is 

topologically mixing, then for any non-empty open set 𝐴 in 𝕌1, the set of forward iterates, 

{𝑓𝑛(𝐴) ∶  𝑛 ≥  1}, is dense in 𝕌1. 

Proof: Suppose (𝕌1, 𝑓) is top. mix., and let 𝐴 be a non-empty open set in 𝕌1. For any non-

empty open set 𝐵 in 𝕌1, there exists an integer 𝑁 such that for every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴) ∩ 𝐵 ≠  ∅. 

Since 𝐵 was chosen arbitrarily, it follows that for any non-empty open set 𝐵 in 𝕌1, there exists 

an integer 𝑁 such that 𝑓𝑛(𝐴) ∩ 𝐵 ≠  ∅ for every 𝑛 ≥ 𝑁. This implies that the set of forward 

iterates, {𝑓𝑛(𝐴) ∶ 𝑛 ≥ 1}, intersects every non-empty open set 𝐵 in 𝕌1. Since 𝐵 was chosen 

arbitrarily, it follows that {𝑓𝑛(𝐴) ∶  𝑛 ≥  1} is dense in 𝕌1. 

Lemma 6-6: Let (𝕌1, 𝔏1) be a b-top. sp., and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is top. 

mix., then for any non-empty open sets 𝐴 and 𝐵 in 𝕌1, there exists an integer 𝑁 such that for 

every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴) ⊂ 𝐵. 
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Proof: Suppose (𝕌1, 𝑓) is top. mix., and let 𝐴 and 𝐵 be non-empty open sets in 𝕌1. Since 

(𝕌1, 𝑓) is top. mix., there exists an integer 𝑁 such that for every 𝑛 ≥  𝑁, 𝑓𝑛(𝐴)  ∩  𝐵 ≠  ∅. 

Let 𝑛 ≥  𝑁 be fixed. If there exists a point 𝑥 ∈  𝑓𝑛(𝐴) that is not in 𝐵, then 𝑓𝑛(𝐴)  ∩  𝐵𝑐  ≠
 ∅, where 𝐵𝑐 is the complement of 𝐵 in 𝕌1. However, this contradicts the assumption that 

𝑓𝑛(𝐴)  ∩  𝐵 ≠  ∅ for every 𝑛 ≥  𝑁. Hence, it must be the case that 𝑓𝑛(𝐴) ⊂ 𝐵 for every 𝑛 ≥
 𝑁. 

Proposition 6-7: Let (𝕌1, 𝔏1) be a b-top. sp., and let 𝑓: 𝕌1 → 𝕌1 be a cont. map. If (𝕌1, 𝑓) is 

top. mix., then every point in 𝕌1 is a top mix. point. 

Proof: Suppose (𝕌1, 𝑓) is top. mix., and let 𝑥 ∈  𝑋 be an arbitrary point. Let 𝐴 and 𝐵 be non-

empty open sets in 𝕌1. Since (𝕌1, 𝑓) is top. mix., there exists an integer 𝑁 such that for every 

𝑛 ≥ 𝑁, 𝑓𝑛(𝐴) ∩ 𝐵 ≠  ∅. By Lemma 5-6, we have 𝑓𝑛(𝐴)  ⊂  𝐵 for every 𝑛 ≥  𝑁. This implies 

that for every non-empty open set 𝐵 in 𝕌1, there exists an integer 𝑁 such that 𝑓𝑛(𝐴)  ⊂  𝐵 for 

every 𝑛 ≥  𝑁. Since 𝐴 and 𝐵 were chosen arbitrarily, it follows that every point 𝑥 in 𝕌1 is a 

top. mix. point. 

 

CONCLUSION: 

The study of top. ent. and the top. mix. property in b-top. sp has been an active area of research. 

Various papers and studies have contributed to the understanding of these concepts and their 

properties in the context of b-topological spaces. 

The top. mix. property in b-top. sp characterizes the behavior of dy. sy. where points from any 

two given sets can eventually get arbitrarily close to each other. The studies have explored 

definitions, characterizations, and relationships with other properties like topological 

transitivity and sensitive dependence on initial conditions. Applications in cryptography and 

data analysis have also been investigated, showcasing the practical relevance of the top. mix. 

property. 

The existing literature provides a foundation for further research in this area. It opens up 

opportunities to explore new concepts, develop advanced measures and indices, and investigate 

applications in diverse fields. The understanding of top. ent. and the top. mix. property in b-

top. sp contributes to our broader understanding of complex dy. sy. and their behavior in 

generalized topological settings. 

As research in this area progresses, it is expected that new insights and applications will 

emerge, deepening our understanding of the dynamics and complexity of systems in b-top. sp 

and paving the way for further advancements in the field. 
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