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ABSTRACT 
 

This study compared the performance of three 

methods on multicollinearity situation. The 

methods include the linear regression, the 
principal component regression and the ridge 

regression method. The methods were compared 

using 50 simulations and for number of 
independent variables p=5 and number of 

observation 6, 10, 20, 30, 40, 50, 60, and 100 

respectively. The objectives of the study is to 

compare the performance of Least Squares 
Regression, Principal Component Regression 

(PCR) and Ridge Regression for handling 

multicollinearity problem and to determine the 
method that ranked best in terms of the degree 

of relative efficiency in overcoming the 

multicollinearity problem using simulated data 
sets. Findings of the study showed that as p is 

closer to n, (p=5 and n=6) the multicollinearity 

is very presence and evident on the R-square 

value for the linear regression method with is 
100% and the standard error of the predicted 

value being zero (0). It was found that as the 

sample size increases, the R-square value tends 
to normalize. Further result showed that the 

Ridge regression method recorded the least R-

square value while the linear regression method 

recorded the highest R-square value. In addition, 
it was found that the PCR method has the least 

standard deviation value across the observed 

sample size followed by the linear model and 
then the ridge regression method. This result 

implies that the principal component regression 

methods is relatively efficient for solving 
multicollinearity problems in linear models that 

the ridge regression.  

 

Keywords: Linear Model; Multicollinearity; 
Standard Deviation; Relative Efficiency 

 

1.0 INTRODUCTION 

Multicollinearity in practical have 

been found to inflate unnecessarily the 

standard errors of the coefficients in 

regression models. The increased standard 

errors in turn implies that the coefficients 

for some independent variables may be 

found not to be significantly far from 0 

(Akinwande et al.,2015). However, by over 

amplifying the standard errors, 

multicollinearity makes some the variables 

in the regression model statistically 

insignificant especially when they should be 

significant. This has posed serious threat to 

the usefulness of the regression model in 

making acceptable estimation.  

It is known that the problem of 

multicollinearity is present in the data set 

where the number of variables is high 

compared to the number of observations 

(i.e. when p >n). Also, it was observed from 

the review of literature that there is limited 

literature on handling of multicollinearity 

problems associated with the number of 

independent variables (p) being very close 

to the number of observation (n). Hence, the 

motivation to examine the performance of 

the least square method, the principal 

component regression and the ridge 

regression on situation where the number of 

observation (n) is at least one unit greater 

than the number of predictor variables.  
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The aim of this study is to examine 

the performance of the least square 

regression analysis, principal component 

regression analysis, and the ridge regression 

analysis on multicollinearity situation with 

the following specific objectives: to 

compare the use of Least Squares 

Regression, Principal Component 

Regression and Ridge Regression for 

handling multicollinearity problem and to 

determine the method that ranked best in 

terms of the degree of relative efficiency in 

overcoming the multicollinearity problem 

using simulated data from the standard 

normal distribution. 

  

2. LITERATURE REVIEW  

According to Mason and Perreault 

(1991), numerous approaches have been 

proposed for coping with collinearity-none 

entirely satisfactory. Just like procedures for 

detection, the procedures for coping with 

collinearity vary in level of sophistication. 

Their study reviewed in brief several of the 

most commonly used approaches for coping 

with collinearity. The authors argued that 

one of the simplest responses to coping with 

collinearity is to drop one or more of the 

collinear variables. This approach may 

eliminate the collinearity challenge, but it 

prompts new complications. In the real 

sense, unless the true coefficient(s) of the 

dropped variable(s) is zero, the model will 

be wrongly specified, resulting in biased 

estimates of some coefficients which might 

be costly. Second, dropping variables makes 

it difficult to identify the relative usefulness 

of the predictor variables. Even when one 

disregards these limitations, the practical 

problem of deciding which variable to drop 

remains unsolved. 

Graham (2003) in his study opined 

that although multiple regression is 

commonly used in testing the individual 

effects of many explanatory variables on a 

continuous response, the inherent 

collinearity (multicollinearity) of 

confounded explanatory variables limits 

analyses and threatens their statistical and 

inferential interpretation. The study 

employed numerical simulations, to 

quantify the impact of multi-collinearity on 

ecological multiple regression and found 

that even low levels of collinearity bias 

analyses such as correlation coefficient 

value of r   0.28 or 2r  0.08, can result 

to any of the following, inaccurate model 

parameterization, decreased statistical 

power, or exclusion of significant predictor 

variables during model creation.  

Vatcheva et al. (2016) reviewed 

epidemiological literature in Public 

Medicine (PubMed) from January 2004 to 

December 2013. From the findings of their 

review, they suggested the need for more 

attention in identifying and minimizing the 

effect of multicollinearity in analysis 

involving data from epidemiologic studies. 

The study employed data generated from 

simulation and real life data from the 

Cameron County Hispanic Cohort to 

demonstrate the adverse effects of 

multicollinearity in the regression analysis. 

They advised researchers to consider the 

diagnostic for multicollinearity as one of the 

steps in regression analysis. 

According to Mela and Kopalle 

(2002), the problem of collinearity in 

empirical research is among the most 

endemic concerns raised by researchers in 

various fields especially management 

sciences. A recent search in EconLit 

revealed 154 studies discussing collinearity 

or multicollinearity in their abstracts. A 

similar full text search of Applied 

Economics (using Infotrac) yielded 220 

articles since 1991 (Mela and Kopalle, 

2002). Various econometric references have 

indicated that collinearity increases 

estimates of parameter variance, yields high 

coefficient of determination in the face of 

low parameter significance, and results in 

parameters with incorrect signs and 

implausible magnitudes (Belsley et al., 

1980; Kmenta, 1986). 

Wentzell and Montoto (2003) 

compared the principal components 

regression (PCR) and the partial least 

squares regression (PLS) using simulation 

studies of complex chemical mixtures which 
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contain a large number of components. The 

findings of their study showed how the 

prediction errors and number of latent 

variables (NLV) used vary with the relative 

abundance of mixture components. 

Simulation parameters varied include the 

distribution of mean concentrations, spectral 

correlation, noise level, number of mixture 

components, number of calibration samples, 

and the maximum number of latent 

variables available. They found that in all 

cases, except when artificial constraints 

were placed on the number of latent 

variables retained, there exist no significant 

differences in the prediction errors reported 

by PCR and PLS. Also, they observed that 

the PLS almost always required fewer latent 

variables than PCR, but did not influence 

predictive ability. 

Chopra et al. (2013) employed two 

regression methods namely; the traditional 

regression method and the ridge regression 

method for the prediction of the estimate of 

the response variable. They varied the 

values of the regression coefficients 

drastically such that negative coefficients 

were transformed into positive and positive 

coefficients transformed into negative when 

regression analysis was employed and data 

reduced or raised. The findings of their 

study showed that the traditional method did 

not prove to be credible for forecasting the 

estimate of the dependent variable 

(compressive strength of concrete). 

However, both in the case of reduction and 

augmentation of data, there exist frequent 

minimum effect which has no or negligible 

impact on the coefficients when performing 

the Ridge regression method.  

 

3.0 RESEARCH METHODOLOGY  

3.1 Method of Data Collection 

The source of data used for this study is 

includes simulation from standard normal 

distribution will be used for p=5 with n= 6, 

10, 20, 30, 40, 50, 60, and 100 respectively.  

 

3.2 The Least Square Regression  

The least square method of estimating 

regression parameters aims at generating 

estimators in such a way that the sum of 

squares of the error is minimized.  

Suppose, 

 Xy  (1) 

 

where X is an n x (k+1) matrix of full rank,  

β is a (k+1) x 1 vector of unknown 

parameters,  

and ε is an n x 1 random vector with mean 0 

and variance σ
2
I.  

The least squares estimator for β is denoted 

by b and is given by  

  yXXXb 
1ˆ  (2) 

 

To solve for b, we shall multiply both sides 

by   1XX to obtain the least square 

estimators as 

  yXXX 
1

b  .  

 

The covariance matrix of b̂ is equal to  

  1
2 )b̂COV(

 XX  (3) 

 

Equation (3) can also be written as 
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where the p’s are the eigenvectors of XX  

and the λ’s are the corresponding 

eigenvalues. 

 

3.3 The Principal Components 

Regression 

Principal Components Regression is 

a technique for analyzing multiple 

regression data that suffer from 

multicollinearity. When multicollinearity 

occurs, least squares estimates are unbiased, 

but their variances are large so they may be 

far from the true value. By adding a degree 

of bias to the regression estimates, principal 

components regression reduces the standard 

errors. It is hoped that the net effect will be 

to give more reliable estimates. 

The least square regression 

parameters are estimated by equation (2). 
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Since the variables are standardized, 

RXX , where R is the correlation matrix 

of independent variables.  

To perform principal components (PC) 

regression, the independent variables to 

their principal components are transformed. 

Mathematically, we write 

ZZPPDXX   (3) 

where D is a diagonal matrix of the 

eigenvalues of XX ,  

P is the eigenvector matrix of XX , and  

Z is a data matrix (similar in structure to X) 

made up of the principal components.  

P is orthogonal so that PP .  

A new variable Z will be created as 

weighted averages of the original variables 

X. Since these new variables are principal 

components, their correlations with each 

other are all zero. Hence, for three 

independent variables, we shall begin with 

variables X1, X2, and X3, and end up with 

Z1, Z2, and Z3.  

 

Severe multicollinearity will be 

detected as very small eigenvalues. To rid 

the data of the multicollinearity, we omit the 

components (the z’s) associated with small 

eigenvalues. Usually, only one or two 

relatively small eigenvalues will be 

obtained. For example, if only one small 

eigenvalue were detected on a problem with 

three independent variables, we would omit 

Z3 (the third principal component). When 

we regress Y on Z1 and Z2, 

multicollinearity is no longer a problem. We 

can then transform our results back to the X 

scale to obtain estimates of B. These 

estimates will be biased, but the size of this 

bias is expected to be more than 

compensated for by the decrease in 

variance. This implies that the mean squared 

error of these estimates is expected to be 

less than that for least squares. 

Mathematically, the estimation formula 

becomes  

  YZDYZ   11
ZZÂ  (4) 

because of the special nature of 

principal components. Equation (4) 

resembles equation (2) but applied to a 

different set of independent variables, Z. 

Note that the two sets of regression 

coefficients, A and B, are related using the 

expression given as: 

BPA   (5) 

and  

PAB  (6) 

(Recall that P is orthogonal so that PP , 

thus by multiplying both sides of equation 

(5) by P will yield equation (6)).  

 

To perform the principal component 

analysis, the covariance matrix is factored 

out using the spectral decomposition 

theorem which is expressed as  

  ppp222111 eeλeeλeeλ   (7) 

 

where ( ),
ii

e is the eigenvalue-

eigenvector pair of  and 

0λλ p1  .  

 

This fits the covariance structure of the 

factor analysis model having as many 

factors as variables (m = p) and having a 

specific variance of 0
i

 for all i. 

LL0LL pppppppp     (8) 

The model which includes the specific 

factors and their variances are taken to be 

the diagonal elements of LL  and the 

approximation is given as  

ψLL  
 (9) 

where,
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The number of factors to be retained is 

similar to the number of positive eigen 

values of the correlation matrix.  

 

The principal component regression 

estimator can be expressed as 

   yZZZŶ k
1

kkk 


 (10) 
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where, 

]Xv,,[XvXVZ p1kk   

The final principal component regression 

estimator of β based on using the first k 

principal component is given as 

kkk ŶVβ̂   (11) 

In addition, the assumptions for the PC 

regression are the same as those used in 

regular multiple regression: linearity, 

constant variance (no outliers), and 

independence. However, since PC 

regression does not provide confidence 

limits, normality need not be assumed. 

 

3.2.3 The Ridge Regression  

One of the goals of ridge regression 

is to produce a regression equation with 

stable coefficients. The coefficients are 

stable in the sense that they are not affected 

by slight variations in the estimation data. 

The ridge regression approach is an attempt 

to construct an alternative estimator that has 

a smaller total mean square error value. 

Recall that the least square regression 

parameters are estimated by equation (2). 

 

To stabilize the coefficients of the 

regression model, k is added to XX  in 

equation (2) as was proposed by Hoerl 

(1975). Hoerl (1975) named this method 

ridge regression because of its similarity to 

ridge analysis used in his earlier work to 

study second-order response surfaces in 

many variables. 

 Hence, the ridge regression is defined by  

  yZkI  ZZ(k)b̂
1 


 (12) 

where k is the bias parameter and Zj is 

obtained by transforming the original 

predictor variable Xj by  

2
jij

jij
ij

)x - x(

)x - x(
Z   (13) 

As k increases from zero, bias of the 

estimates increases. On the other hand, the 

total variance (the sum of the variances of 

the estimated regression coefficients), is  





 


p

1j
2

j

j
2

p

1j
j

k)(λ

λ
)β̂Var((k)  varianceTotal   

(14) 

where, λj is the corresponding eigenvalues  

Equation (3.9) is a decreasing function of k. 

This shows the effect of the ridge parameter 

on the total variance of the ridge estimates 

of the regression coefficients. Substituting k 

= 0 in (3.9), we obtain 





p

1j j

2

λ

1
(k)  varianceTotal   (15) 

This shows the effect of small eigenvalue on 

the total variance of the Ordinary Least 

Square (OLS) estimates of the regression 

coefficients. As k continues to increase 

without bound, the regression estimates all 

tend toward zero. 

 

The idea of ridge regression is to 

pick a value of k for which the reduction in 

total variance is not exceeded by the 

increase in bias. It has been shown that there 

is a positive value of k for which the ridge 

estimates will be stable with respect to small 

changes in the estimation data (Hoerl and 

Kennard, 1970).  

 

3.2.3.1 Fixed Point Method of 

Determining k 

 

The fixed point method of estimating k was 

suggested by Hoerl et al., (1975). The 

method is expressed mathematically as: 







p

1j

2
j

2

(0))β̂(

)0( p
k


 (16) 

where (0)β̂ , (0),β̂ p1  are the least squares 

estimates of p1 β̂ , ,β̂   when the model in 

(2) is fitted to the data (i.e., when k = 0), 

and )0(2 is the corresponding residual 

mean square. 

 

4. DATA ANALYSIS AND RESULTS 

4.1 Comparison of adequacy measure of 

the Methods 
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This section presents the coefficient of 

determination measure of the three methods 

for the various situations considered in this 

study.  

 
Table 1: Summary Result of R-square Value 

Sample Size LM PCR RIDGE 

6 100 79.85794 75.33747 

10 85.79662 83.7748 36.99988 

20 83.84568 83.42494 37.21827 

30 82.64182 80.05734 37.1226 

40 80.22684 79.19647 53.59439 

50 79.59645 73.81498 58.5788 

60 78.97764 71.54733 46.41893 

100 71.21008 69.49055 38.39548 

 

 
Figure 1: Distribution of mean R-square Value for p=5 

 

The result presented in table 1 shows 

the summary of the mean R-square values 

obtained for 50 simulation for the observed 

sample sizes. This result is employed to plot 

a line graph of the methods in figure 1. The 

result revealed that the Ridge regression 

method recorded the least R-square value 

while the linear regression method recorded 

the highest R-square value.  

 

4.2 Comparison of relative efficiency of 

the Methods 

This section presents the relative efficiency 

of the three methods for the various 

situations considered in this study.  
 

Table 2: Summary Result of Relative Efficiency of the 

predicted value 

Sample Size LM PCR RIDGE 

6 0 0.9464 0.8081 

10 1.0018 0.7663 0.771 

20 1.1098 0.6372 0.8396 

30 1.0296 0.8606 0.9334 

40 1.0369 0.8777 0.9966 

50 0.9503 0.8457 0.9403 

60 0.8677 0.7363 0.8203 

100 0.7978 0.7183 0.7455 

Mean (SD) 0.8492 0.7985 0.8569 

 
Figure 2: Distribution of relative efficiency of the predicted 

value  

The result presented in table 2 shows 

the summary of the PCR method has the 

least standard deviation value across the 

observed sample size with an average of 

0.7985, followed by the linear model with a 

value of 0.8492 and the ridge regression 

method with a value of 0.8569. This result is 

employed to plot a line graph of the 

methods in figure 2. The result revealed that 

the principal component regression methods 

is relatively efficient for solving 

multicollinearity problems in linear models 

that the ridge regression.  

 

5. CONCLUSION  

This study compared the 

performance of three methods on 

multicollinearity situation. The methods 

include the linear regression, the principal 

component regression and the ridge 

regression method. The methods were 

compared using 50 simulations and for 

number of independent variables p=5 and 

number of observation 6, 10, 20, 30, 40, 50, 

60, and 100 respectively. Findings of the 

study showed that as p is closer to n (p=5 

and n=6) the multicollinearity is very 

presence and evident on the R-square value 

for the linear regression method with is 

100% and the standard error of the predicted 

value being zero (0).  

It was found that as the sample size 

increases, the R-square value tends to 

normalize. Further result showed that the 

Ridge regression method recorded the least 

R-square value while the linear regression 

method recorded the highest R-square value. 
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In addition, it was found that the PCR 

method has the least standard deviation 

value across the observed sample size 

followed by the linear model and then the 

ridge regression method. This result implies 

that the principal component regression 

methods is relatively efficient for solving 

multicollinearity problems in linear models 

that the ridge regression. This study 

considered number of independent variables 

p=5, we recommend using p>5 as area for 

further research.  
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